Fabrication of 2-Chloropyridine-Functionalized Fe3O4/Amino-Silane Core–Shell Nanoparticles
نویسندگان
چکیده مقاله:
In this report, magnetic iron oxide nanoparticles were synthesized via coprecipitation of Fe2+ and Fe3+ with ammonium hydroxide, and the surface of synthesized nanoparticles was organically functionalized by commercially available amine coupling agent namely, 3-aminopropyl trimethoxysilane (APTS) by using well-known sol–gel method. Further reaction of the synthesized Fe3O4@APTS core-shell magnetite nanoparticles with 2-Chloropyridine via nucleophilic aromatic mechanism in position 2 led to the target molecule Fe3O4@APTS/ 2-Chloropyridine. All prepared materials e.g the magnetite iron oxide, Fe3O4@APTS nanoparticles as well as organically coated Fe3O4@APTS/ 2-Chloropyridine magnetite particles were characterized using Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). SEM images showed that the Fe3O4@APTS/ 2-Chloropyridine nanoparticles were roughly spherical with average size of 45-55 nm. FTIR indicated the formation of a layer of APTS-Py on the surface of the Fe3O4 magnetite core. Thermogravimetric analysis of the coated APTS-Py on the Fe3O4 surface revealed that 8 % of organic materials coated on iron oxide nanoparticles.
منابع مشابه
fabrication of 2-chloropyridine-functionalized fe3o4/amino-silane core–shell nanoparticles
in this report, magnetic iron oxide nanoparticles were synthesized via coprecipitation of fe2+ and fe3+ with ammonium hydroxide, and the surface of synthesized nanoparticles was organically functionalized by commercially available amine coupling agent namely, 3-aminopropyl trimethoxysilane (apts) by using well-known sol–gel method. further reaction of the synthesized fe3o4@apts core-shell magne...
متن کاملFabrication and Cytotoxicity of Gemcitabine-Functionalized Magnetite Nanoparticles.
Nanotechnology has been successfully used for the fabrication of targeted anti-cancer drug carriers. This study aimed to obtain Fe₃O₄ nanoparticles functionalized with Gemcitabine to improve the cytotoxic effects of the chemotherapeutic substance on cancer cells. The (un) functionalized magnetite nanoparticles were synthesized using a modified co-precipitation method. The nanoconjugate characte...
متن کاملOptimizing the immobilization of gold nanoparticles on functionalized silicon surfaces: amine- vs thiol-terminated silane
Immobilization of gold nanoparticles on planar surfaces is of great interest to many scientific communities; chemists, physicists, biologists, and the various communities working at the interfaces between these disciplines. Controlling the immobilization step, especially nanoparticles dispersion and coverage, is an important issue for all of these communities. We studied the parameters that can...
متن کاملFunctionalized TiO2 nanoparticles by single-step hydrothermal synthesis: the role of the silane coupling agents
A simple, robust and versatile hydrothermal synthesis route to in situ functionalized TiO2 nanoparticles was developed using titanium(IV) isopropoxide as Ti-precursor and selected silane coupling agents (3-aminopropyltriethoxysilane (APTES), 3-(2-aminoethylamino)propyldimethoxymethylsilane (AEAPS), and n-decyltriethoxysilane (DTES)). Spherical nanoparticles (ca. 9 nm) with narrow size distribut...
متن کاملCarbene-Functionalized Ruthenium Nanoparticles
Stable ruthenium nanoparticles were synthesized by protecting the particles with diazo molecules that reacted readily with the ruthenium surface forming RudC carbene bonds, as manifested in Fourier transform infrared and 1H NMR measurements. The resulting particles, with the core diameter averaged at 2.12 ( 0.72 nm as determined by transmission electron microscopic measurements, showed a Mie sc...
متن کاملFerrocene-functionalized carbon nanoparticles.
Carbon nanoparticles were synthesized from natural gas soot and functionalized with ferrocenyl moieties by using 4-ferrocenylphenyldiazonium as the reactive precursor. The incorporation of the ferrocenyl units onto the carbon nanoparticle surface was confirmed by varied spectroscopic measurements. For instance, in FTIR measurements the characteristic vibrational bands of the ferrocenyl and phen...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 11 شماره 1
صفحات 39- 44
تاریخ انتشار 2015-03-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023